
Various Topics Related to the Gradient Vector

Finding the Maximum and Miniumum Values of the Directional Derivative:

Say we have a function z  fx,y, which is differentiable and has a nonzero gradient vector
at the point x0,y0.

For any unit vector u, the directional derivative of f at the point x0,y0 in the direction of u is
Du fx0,y0  u  fx0,y0.

Let us ask the question, what is the maximum possible value that Du fx0,y0 can have?
And for which unit vector does it achieve this maximum value?

Let  denote the angle between u and fx0,y0. As discussed in Chapter 11,  must lie in
the interval 0,. If   0, then u points in the same direction as fx0,y0. If   , then u
points in the opposite direction from fx0,y0. If   

2 , then u is orthogonal (i.e.,
perpendicular) to fx0,y0.

Recall that for any nonzero vectors a and b, if  is the angle between them, then
a  b  |a||b| cos.

Hence, Du fx0,y0  u  fx0,y0  |u||fx0,y0| cos  |fx0,y0| cos. From this we can
see the following:
 Since cos is positive for   0, 

2 , the directional derivative is positive when
  0, 

2 .

 Since cos is negative for    
2 ,, the directional derivative is negative when

   
2 ,.

 Since cos 
2  0, the directional derivative is zero when   

2 .

 Since cos0  1, the directional derivative has the value |fx0,y0| when   0. This
is the maximum value of the directional derivative.

 Since cos  0,1 for   0, 
2 , the value of the directional derivative must be

between 0 and |fx0,y0| when   0, 
2 .

 Since cos  1, the directional derivative has the value |fx0,y0| when   .
This is the minimum value of the directional derivative.

 Since cos  1,0 for    
2 ,, the value of the directional derivative must be

between |fx0,y0| and 0 when    
2 ,.

Thus, the directional derivative has its maximum value when   0, i.e.,when u points in the
direction of fx0,y0, and this maximum value is |fx0,y0|. Furthermore, the directional
derivative has its minimum value when   , i.e.,when u points in the direction of
fx0,y0, and this maximum value is |fx0,y0|. The directional derivative has a value of
zero when   

2 , i.e., when u is orthogonal to fx0,y0. (If the unit vector in the direction
of fx0,y0 is  a,b , then there are two unit vectors orthogonal to fx0,y0, namely,
 b,a  and  b,a . 
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Picture this: We start with a unit vector positioned with its tail at the point x0,y0, pointing in
the same direction as fx0,y0, so   0. For this vector, the directional derivative has its
maximum value, equal to |fx0,y0|, which is a positive number. Now keep the tail fixed at
x0,y0 and rotate the unit vector away from fx0,y0. As we rotate it away,  increases and
the value of the directional derivative steadily declines toward 0. The directional derivative
reaches 0 when   

2 , i.e., when our unit vector is orthogonal (perpendicular) to fx0,y0.
As we rotate our unit vector even further away from fx0,y0,  further increases, and the
directional derivative becomes negative. As we continue our rotation, the value of the
directional derivative continues to decrease. But bear in mind that we are now dealing with
a negative value, so saying that it “decreases” means its absolute value is increasing. The
minimum value of the directional derivative (i.e., the negative value with the largest absolute
value) is obtained when   , i.e., when our unit vector is the exact opposite of fx0,y0,
and this minimum value is equal to |fx0,y0|, which is a negative number.

For example, consider z  fx,y  x2  y2. fx,y   2x, 2y . At the point 1,8, the
gradient is f1,8   2,16 , whose magnitude is 260 or 2 65 . The unit vector in the
direction of f1,8 is 1

2 65
 2,16    1

65
, 8

65
, the unit vector in the opposite direction

is  1
65

, 8
65

, and the orthogonal unit vectors are  8

65
, 1

65
 and  8

65
, 1

65
. Go

ahead and compute the directional derivative at the point 1,8 for each of these four unit
vectors. The first result is 130

65
, but if we rationalize the denominator, we get

130 65
65  2 65 , which equals the magnitude of f1,8. The second result is 130

65
, and the

third and fourth results are 0.

The Relationship Between Gradient Vectors and Level Curves:

If we are given a level curve z  c for a function z  fx,y, then:
 At any point on the level curve, the gradient vector f will be orthogonal to the level

curve’s tangent line, to its velocity vector, and to its unit tangent vector. For brevity,
we shall simply say f is “orthogonal to the level curve.”

 As we move along the curve, the directional derivative at any instant must be zero.
In other words, at any point on the curve, if we move in the direction indicated by the
velocity vector, then the directional derivative will be zero.

It makes sense that the directional derivative should be zero as we move along a level
curve. After all, as we move through the x,y plane along the level curve z  c, the value of
the function fx,y does not change–it is fixed at the constant c. Since the directional
derivative is the rate of change of the function as we move in a particular direction, and
since a function with a constant value has a rate of change equal to zero, it’s only natural to
expect that the directional derivative would be zero as we move along the level curve.

Picture a series of level curves for z  fx,y, such as z  10, z  20, z  30, z  40. The
graph of the function is a surface in x,y, z space, which we can picture as consisting of hills
and valleys. The series of level curves in the x,y plane is like a topographic map, where
each level curve indicates a specified “altitude.” If we are on the surface and walking along
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a path corresponding to a given level curve on the map, then our altitude does not change.
If we turn at a right angle to the path, we will be moving either uphill as steeply as possible
or downhill as steeply as possible (depending on whether we turn in the direction of the
gradient vector or in the opposite direction).

Based on this analogy, we say that f points in the direction of steepest ascent, whereas
f points in the direction of steepest descent.

Hyper-Surfaces, Three-Dimensional Gradient Vectors, Level Surfaces, and Tangent
Planes:

All the concepts developed so far can be carried over to higher dimensions. Say we have a
function w  Fx,y, z, which has a three-dimensional domain and a one-dimensional range.
The domain is x,y, z space or some subset thereof, and the range is the w axis or some
subset thereof. We cannot actually draw the graph, since it would exist in
“four-dimensional” space (i.e., x,y, z,w space), which does not physically exist. However, we
can refer to the graph theoretically as a hyper-surface.

The set of all points in x,y, z space such that the function has a fixed value, c, is known as a
level surface, which can be denoted as Fx,y, z  c or simply w  c.

Since the function F has three independent variables, it has three partial derivatives:
F
x , F

y , and F
z . These could also be denoted w

x , w
y , and w

z , or as Fx, Fy, and Fz.

The gradient vector is F   F
x , F

y , F
z .

As mentioned previously, at any given point, a surface may or may not have a tangent
plane. Later we will explore the conditions under which we are guaranteed the existence of
a tangent plane. For now, just assume the tangent plane exists at a given point. Then
every line which is tangential to the surface at this point must lie in this plane (indeed, the
tangent plane can be thought of as the union of all possible tangent lines at the given point).

If we are given a level surface w  c for a function w  Fx,y, z, then:
 At any point on the level surface, the gradient vector F will be orthogonal to the

level surface’s tangent plane. For brevity, we shall simply say F is “orthogonal to
the level surface.”

 As we move across the level surface along any path, when we pass through a given
point, our tangent vector will lie in the surface’s tangent plane at that point, and the
directional derivative of Fx,y, z at that point, in the direction of the velocity vector,
must be zero.

To find an equation for the tangent plane of the level surface at a specified point, x0,y0, z0,
all we need is a normal vector for the plane. Fx0,y0, z0 can serve that role. Since
Fx0,y0, z0   Fxx0,y0, z0,Fyx0,y0, z0,Fzx0,y0, z0 , the equation of the tangent plane
is Fxx0,y0, z0x  x0  Fyx0,y0, z0y  y0  Fzx0,y0, z0z  z0  0. This could also be
written as Fx0,y0, z0   x  x0,y  y0, z  z0   0.
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For example, suppose we have the function w  Fx,y, z  x3  y4  z5. At the point
2,1,1 in x,y, z space, the value of the function is w  F2,1,1  10. So the point
2,1,1,10 lies on the graph of F in x,y, z,w space (which is a hyper-surface).

Consider the level surface w  10. The point 2,1,1 lies on this level surface. The
equation of the level surface is x3  y4  z5  10.

Fx  3x2, Fy  4y3, and Fz  5z4, so Fx,y, z   3x2, 4y3, 5z4 . At the point 2,1,1, we
get F2,1,1   12,4,5 .

The tangent plane to the surface at the point 2,1,1 is thus
12x  2  4y  1  5z  1  0, or 12x  4y  5z  33.
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